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Exercise 7

In Exercises 6 through 11, use the formal method, involving an infinite series of residues and
illustrated in Examples 2 and 3 in Sec. 89, to find the function f(t) that corresponds to the given
function F (s).

F (s) =
1

s cosh s1/2
.

Ans. f(t) = 1 +
4

π

∞∑
n=1

(−1)n

2n− 1
exp

[
−(2n− 1)2π2t

4

]
.

Solution

The inverse Laplace transform of the given function for F (s) is defined by the Bromwich integral,

f(t) =
1

2πi

ˆ γ+i∞

γ−i∞
est

ds

s cosh s1/2
,

where γ is a real constant chosen such that all singularities of the integrand lie to the left of the
infinite vertical line (γ − i∞, γ + i∞) in the complex plane. They occur where the denominator is
equal to zero.

s cosh s1/2 = 0

s = 0 or cosh s1/2 = 0

cos is1/2 = 0

is1/2 =
1

2
(2k − 1)π, k = 0,±1,±2, . . . → sn = −π

2

4
(2n− 1)2, n = 1, 2, . . .

Figure 1: This is the complex plane with the singularities of the integrand marked as well as the
vertical line (γ − i∞, γ + i∞).
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The integral is evaluated by considering a closed loop integral in the complex plane containing
this vertical line and then applying the Cauchy residue theorem to get an equation, allowing us to
solve for it. Normally the vertical line loops around back to γ − iR by a semicircular arc to the
left, but because of s1/2 =

√
s, a different path has to be taken. This is because for complex s, the

square root function can be written in terms of the logarithm.

√
s = exp

(
1

2
log s

)
In order for cosh s1/2 to be defined when s is negative, we will choose the following arbitrary
branch cut, not the principal one (|s| > 0, −π < Arg s < π).

= exp

[
1

2
(ln r + iθ)

]
,

(
|s| > 0, −7π

6
< θ <

5π

6

)
=
√
reiθ/2,

where r = |s|. Taking the branch cut into account, the closed loop in Figure 2 will be considered.

Figure 2: This is the closed loop that will be considered to calculate the inverse Laplace transform.
The branch cut (|s| > 0, −7π/6 < arg s < 5π/6) is represented in the complex plane by the
squiggly line. In order to close the integration path after traversing the vertical line, let it follow a
circular arc CR1 . Once the path gets to the branch cut at θ = 5π/6, integrate around it by going
radially along L1, around the origin by a circular arc Cρ to the underside of the cut, and then
radially again along L2 at θ = −7π/6. From there, let it follow a circular path CR2 back to γ− iR.
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Now that the integration path is closed, the Cauchy residue theorem can be applied, which states
that the integral over this path is equal to 2πi times the sum of the residues inside the loop.

ffi
C
est

ds

s cosh s1/2
= 2πi

∑
n

Res
s=sn

est
1

s cosh s1/2

This closed loop integral is the sum of six integrals, one over each arc in the loop.

ˆ γ+iR

γ−iR
est

ds

s cosh s1/2
+

ˆ

CR1

est
ds

s cosh s1/2
+

ˆ

L1

est
ds

s cosh s1/2

+

ˆ

Cρ

est
ds

s cosh s1/2
+

ˆ

L2

est
ds

s cosh s1/2
+

ˆ

CR2

est
ds

s cosh s1/2
= 2πi

∑
n

Res
s=sn

est
1

s cosh s1/2

The parameterizations for the arcs are as follows.

CR1 : s = Reiθ, θ =
π

2
→ θ =

5π

6

CR2 : s = Reiθ, θ = −7π

6
→ θ = −π

2

Cρ : s = ρeiθ, θ =
5π

6
→ θ = −7π

6

L1 : s = re5iπ/6, r = R → r = ρ

L2 : s = re−7iπ/6, r = ρ → r = R

In the limit as R→∞ the integrals over CR1 and CR2 vanish, and in the limit as ρ→ 0 the
integral over Cρ tends to −2πi. The integral over L1 cancels with the one over L2. Proof for each
of these statements will be given at the end.

ˆ γ+i∞

γ−i∞
est

ds

s cosh s1/2
− 2πi = 2πi

∞∑
n=1

Res
s=sn

est
1

s cosh s1/2

The residues at s = sn are evaluated by

Res
s=sn

est
1

s cosh s1/2
=
p(sn)

q′(sn)
,

where

p(s) = est

q(s) = s cosh s1/2 → q′(s) = cosh s1/2 + s sinh s1/2 · 1
2
s−1/2

= cosh s1/2 +
1

2
s1/2 sinh s1/2.
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The cosh s1/2 term vanishes upon substituting sn. We have

p(sn)

q′(sn)
= esnt

1
1
2s

1/2
n sinh s

1/2
n

= exp

[
−π

2

4
(2n− 1)2t

]
1

1
2 ·

1
2i(2n− 1)π sinh

[
1
2i(2n− 1)π

]
= exp

[
−π

2

4
(2n− 1)2t

]
1

1
2 ·

i
2(2n− 1)π sinh

[
i
2(2n− 1)π

]
= exp

[
−π

2

4
(2n− 1)2t

]
1

1
2 ·

i2

2 (2n− 1)π sin
[
1
2(2n− 1)π

] .
(−1)n−1 can be used in place of sin

[
1
2(2n− 1)π

]
. Combining it with the minus sign from i2 gives

(−1)n.

= exp

[
−π

2

4
(2n− 1)2t

]
4(−1)n

(2n− 1)π

Consequently,

Res
s=sn

est
1

s cosh s1/2
=

4(−1)n

π(2n− 1)
exp

[
−π

2

4
(2n− 1)2t

]
and ˆ γ+i∞

γ−i∞
est

ds

s cosh s1/2
− 2πi = 2πi

∞∑
n=1

4(−1)n

π(2n− 1)
exp

[
−π

2

4
(2n− 1)2t

]
.

Divide both sides by 2πi.

1

2πi

ˆ γ+i∞

γ−i∞
est

ds

s cosh s1/2
− 1 =

∞∑
n=1

4(−1)n

π(2n− 1)
exp

[
−π

2

4
(2n− 1)2t

]

1

2πi

ˆ γ+i∞

γ−i∞
est

ds

s cosh s1/2
= 1 +

4

π

∞∑
n=1

(−1)n

(2n− 1)
exp

[
−π

2

4
(2n− 1)2t

]
Therefore, the inverse Laplace transform of F (s) is

f(t) = 1 +
4

π

∞∑
n=1

(−1)n

(2n− 1)
exp

[
−π

2

4
(2n− 1)2t

]
.
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The Integral Over CR1

The objective here is to show that

lim
R→∞

ˆ
CR1

est
ds

s cosh s1/2
= 0.

Start by writing hyperbolic cosine in terms of exponential functions.
ˆ
CR1

est
ds

s cosh s1/2
=

ˆ
CR1

est
ds

s exp(s
1/2)+exp(−s1/2)

2

=

ˆ
CR1

est
2 ds

s[exp(s1/2) + exp(−s1/2)]

The parameterization of the circular arc CR1 in Figure 2 is s = Reiθ, where θ goes from π/2 to 5π/6.

=

ˆ 5π/6

π/2
eRe

iθt 2(Rieiθ dθ)

Reiθ[exp(
√
Reiθ/2) + exp(−

√
Reiθ/2)]

=

ˆ 5π/6

π/2
eRt(cos θ+i sin θ)

2i dθ

exp
[√

R
(
cos θ2 + i sin θ

2

)]
+ exp

[
−
√
R
(
cos θ2 + i sin θ

2

)]
=

ˆ 5π/6

π/2
eRt cos θeiRt sin θ

2i dθ

exp
(√

R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)
Now consider the integral’s magnitude.∣∣∣∣∣
ˆ
CR1

est
ds

s cosh s1/2

∣∣∣∣∣ =
∣∣∣∣∣∣
ˆ 5π/6

π/2
eRt cos θeiRt sin θ

2i dθ

exp
(√

R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)
∣∣∣∣∣∣

≤
ˆ 5π/6

π/2

∣∣∣∣∣∣eRt cos θeiRt sin θ 2i

exp
(√

R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)
∣∣∣∣∣∣ dθ

=

ˆ 5π/6

π/2

∣∣∣eRt cos θ∣∣∣ ∣∣∣eiRt sin θ∣∣∣ |2i|∣∣∣exp(√R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)∣∣∣ dθ

w
w
w
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∣∣∣∣∣
ˆ
CR1

est
ds

s cosh s1/2

∣∣∣∣∣ ≤
ˆ 5π/6

π/2
eRt cos θ

2∣∣∣exp(√R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)∣∣∣dθ
≤
ˆ 5π/6

π/2
eRt cos θ

2∣∣∣exp(√R cos θ2

)
exp

(
i
√
R sin θ

2

)∣∣∣− ∣∣∣exp(−√R cos θ2

)
exp

(
−i
√
R sin θ

2

)∣∣∣ dθ
=

ˆ 5π/6

π/2
eRt cos θ

2

exp
(√

R cos θ2

)
− exp

(
−
√
R cos θ2

) dθ
Take the limit of both sides now as R→∞.

lim
R→∞

∣∣∣∣∣
ˆ
CR1

est
ds

s cosh s1/2

∣∣∣∣∣ ≤ lim
R→∞

ˆ 5π/6

π/2
eRt cos θ

2

exp
(√

R cos θ2

)
− exp

(
−
√
R cos θ2

) dθ
Because the limits of integration are constant, the limit may be brought inside the integral.

lim
R→∞

∣∣∣∣∣
ˆ
CR1

est
ds

s cosh s1/2

∣∣∣∣∣ ≤
ˆ 5π/6

π/2
lim
R→∞

eRt cos θ
2

exp
(√

R cos θ2

)
− exp

(
−
√
R cos θ2

) dθ
Since θ is between π/2 and 5π/6, the cosine of θ is negative and the cosine of θ/2 is positive. In
addition, R and t are positive, so Rt cos θ tends to −∞,

√
R cos(θ/2) tends to ∞, and

−
√
R cos(θ/2) tends to −∞. As a result, the integral tends to zero.

lim
R→∞

∣∣∣∣∣
ˆ
CR1

est
ds

s cosh s1/2

∣∣∣∣∣ ≤ 0

The magnitude of a number cannot be negative.

lim
R→∞

∣∣∣∣∣
ˆ
CR1

est
ds

s cosh s1/2

∣∣∣∣∣ = 0

The only number that has a magnitude of zero is zero. Therefore,

lim
R→∞

ˆ
CR1

est
ds

s cosh s1/2
= 0.
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The Integral Over CR2

The objective here is to show that

lim
R→∞

ˆ
CR2

est
ds

s cosh s1/2
= 0.

Start by writing hyperbolic cosine in terms of exponential functions.
ˆ
CR2

est
ds

s cosh s1/2
=

ˆ
CR2

est
ds

s exp(s
1/2)+exp(−s1/2)

2

=

ˆ
CR2

est
2 ds

s[exp(s1/2) + exp(−s1/2)]

The parameterization of the circular arc CR2 in Figure 2 is s = Reiθ, where θ goes from −7π/6 to −π/2.

=

ˆ −π/2
−7π/6

eRe
iθt 2(Rieiθ dθ)

Reiθ[exp(
√
Reiθ/2) + exp(−

√
Reiθ/2)]

=

ˆ −π/2
−7π/6

eRt(cos θ+i sin θ)
2i dθ

exp
[√

R
(
cos θ2 + i sin θ

2

)]
+ exp

[
−
√
R
(
cos θ2 + i sin θ

2

)]
=

ˆ −π/2
−7π/6

eRt cos θeiRt sin θ
2i dθ

exp
(√

R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)
Now consider the integral’s magnitude.∣∣∣∣∣
ˆ
CR2

est
ds

s cosh s1/2

∣∣∣∣∣ =
∣∣∣∣∣∣
ˆ −π/2
−7π/6

eRt cos θeiRt sin θ
2i dθ

exp
(√

R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)
∣∣∣∣∣∣

≤
ˆ −π/2
−7π/6

∣∣∣∣∣∣eRt cos θeiRt sin θ 2i

exp
(√

R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)
∣∣∣∣∣∣ dθ

=

ˆ −π/2
−7π/6

∣∣∣eRt cos θ∣∣∣ ∣∣∣eiRt sin θ∣∣∣ |2i|∣∣∣exp(√R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)∣∣∣ dθ
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∣∣∣∣∣
ˆ
CR2

est
ds

s cosh s1/2

∣∣∣∣∣ ≤
ˆ −π/2
−7π/6

eRt cos θ
2∣∣∣exp(√R cos θ2

)
exp

(
i
√
R sin θ

2

)
+ exp

(
−
√
R cos θ2

)
exp

(
−i
√
R sin θ

2

)∣∣∣dθ
≤
ˆ −π/2
−7π/6

eRt cos θ
2∣∣∣exp(√R cos θ2

)
exp

(
i
√
R sin θ

2

)∣∣∣− ∣∣∣exp(−√R cos θ2

)
exp

(
−i
√
R sin θ

2

)∣∣∣ dθ
=

ˆ −π/2
−7π/6

eRt cos θ
2

exp
(√

R cos θ2

)
− exp

(
−
√
R cos θ2

) dθ
Take the limit of both sides now as R→∞.

lim
R→∞

∣∣∣∣∣
ˆ
CR2

est
ds

s cosh s1/2

∣∣∣∣∣ ≤ lim
R→∞

ˆ −π/2
−7π/6

eRt cos θ
2

exp
(√

R cos θ2

)
− exp

(
−
√
R cos θ2

) dθ
Because the limits of integration are constant, the limit may be brought inside the integral.

lim
R→∞

∣∣∣∣∣
ˆ
CR2

est
ds

s cosh s1/2

∣∣∣∣∣ ≤
ˆ −π/2
−7π/6

lim
R→∞

eRt cos θ
2

exp
(√

R cos θ2

)
− exp

(
−
√
R cos θ2

) dθ
Since θ is between −7π/6 and −π/2, the cosine of θ is negative and the cosine of θ/2 is either
positive or negative. In addition, R and t are positive, so Rt cos θ tends to −∞,

√
R cos(θ/2)

tends to ±∞, and −
√
R cos(θ/2) tends to ∓∞. As a result, the integral tends to zero.

lim
R→∞

∣∣∣∣∣
ˆ
CR2

est
ds

s cosh s1/2

∣∣∣∣∣ ≤ 0

The magnitude of a number cannot be negative.

lim
R→∞

∣∣∣∣∣
ˆ
CR2

est
ds

s cosh s1/2

∣∣∣∣∣ = 0

The only number that has a magnitude of zero is zero. Therefore,

lim
R→∞

ˆ
CR2

est
ds

s cosh s1/2
= 0.
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The Integral Over Cρ

The objective here is to show that

lim
ρ→0

ˆ
Cρ

est
ds

s cosh s1/2
= −2πi.

Start by writing hyperbolic cosine in terms of exponential functions.

ˆ
Cρ

est
ds

s cosh s1/2
=

ˆ
Cρ

est
ds

s exp(s
1/2)+exp(−s1/2)

2

=

ˆ
Cρ

est
2 ds

s[exp(s1/2) + exp(−s1/2)]

The parameterization of the circular arc Cρ in Figure 2 is s = ρeiθ, where θ goes from 5π/6 to
−7π/6.

=

ˆ −7π/6
5π/6

eρe
iθt 2(ρieiθ dθ)

ρeiθ[exp(
√
ρeiθ/2) + exp(−√ρeiθ/2)]

=

ˆ −7π/6
5π/6

eρe
iθt 2i dθ

exp(
√
ρeiθ/2) + exp(−√ρeiθ/2)

Now take the limit of both sides as ρ→ 0.

lim
ρ→0

ˆ
Cρ

est
ds

s cosh s1/2
= lim

ρ→0

ˆ −7π/6
5π/6

eρe
iθt 2i dθ

exp(
√
ρeiθ/2) + exp(−√ρeiθ/2)

Because the limits of integration are constant, the limit may be brought inside the integral.

lim
ρ→0

ˆ
Cρ

est
ds

s cosh s1/2
=

ˆ −7π/6
5π/6

lim
ρ→0

eρe
iθt 2i dθ

exp(
√
ρeiθ/2) + exp(−√ρeiθ/2)

=

ˆ −7π/6
5π/6

e0
2i dθ

exp(0) + exp(0)

=

ˆ −7π/6
5π/6

i dθ

= i

[
−7π

6
− 5π

6

]
Therefore,

lim
ρ→0

ˆ
Cρ

est
ds

s cosh s1/2
= −2πi.
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The Integral Over L1

The parameterization of the radial arc L1 in Figure 2 is s = re5iπ/6, where r goes from R to ρ.

ˆ

L1

est
ds

s cosh s1/2
=

ˆ ρ

R
ere

5iπ/6t dr e5iπ/6

re5iπ/6 cosh(
√
re5iπ/12)

=

ˆ ρ

R
ere

5iπ/6t dr

r cosh(
√
re5iπ/12)

=

ˆ ρ

R
exp

[
rt

(
−
√
3

2
+
i

2

)]
dr

r cosh
[√

r
(√

6−
√
2

4 + i
√
6+
√
2

4

)]
= −
ˆ R

ρ
exp

[
rt

(
−
√
3

2
+
i

2

)]
dr

r cosh
[√

r
(√

6−
√
2

4 + i
√
6+
√
2

4

)]
The Integral Over L2

The parameterization of the radial arc L2 in Figure 2 is s = re−7iπ/6, where r goes from ρ to R.

ˆ

L2

est
ds

s cosh s1/2
=

ˆ R

ρ
ere

−7iπ/6t dr e−7iπ/6

re−7iπ/6 cosh(
√
re−7iπ/12)

=

ˆ R

ρ
ere

−7iπ/6t dr

r cosh(
√
re−7iπ/12)

=

ˆ R

ρ
exp

[
rt

(
−
√
3

2
+
i

2

)]
dr

r cosh
[√

r
(
−
√
6+
√
2

4 − i
√
6+
√
2

4

)]
=

ˆ R

ρ
exp

[
rt

(
−
√
3

2
+
i

2

)]
dr

r cosh
[√

r
(√

6−
√
2

4 + i
√
6+
√
2

4

)]
Therefore, ˆ

L1

est
ds

s cosh s1/2
+

ˆ

L2

est
ds

s cosh s1/2
= 0.
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